CONTENT

Introduction

1

Laboratory Electrodes

<table>
<thead>
<tr>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Electrodes</td>
</tr>
<tr>
<td>pH Glass Electrode</td>
</tr>
<tr>
<td>pH Combination Electrodes</td>
</tr>
<tr>
<td>Redox (ORP) Combination Electrodes</td>
</tr>
<tr>
<td>Conductivity Cells</td>
</tr>
<tr>
<td>Temperature Sensors</td>
</tr>
<tr>
<td>Corrosion Measuring Cell</td>
</tr>
<tr>
<td>Connection Cables</td>
</tr>
</tbody>
</table>

Process Electrodes

<table>
<thead>
<tr>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Electrodes</td>
</tr>
<tr>
<td>pH Glass Electrode</td>
</tr>
<tr>
<td>pH Combination Electrodes</td>
</tr>
<tr>
<td>pH/Redox (ORP) Combination Electrodes</td>
</tr>
<tr>
<td>Redox (ORP) Combination Electrodes</td>
</tr>
<tr>
<td>Conductivity Cells</td>
</tr>
<tr>
<td>Oxygen Sensors</td>
</tr>
<tr>
<td>Temperature Sensors</td>
</tr>
<tr>
<td>Connection Cables</td>
</tr>
</tbody>
</table>

Technical Instructions

<table>
<thead>
<tr>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>for using pH and redox electrodes</td>
</tr>
<tr>
<td>Cable and Connector codes</td>
</tr>
<tr>
<td>Standard and Buffer Solutions</td>
</tr>
</tbody>
</table>

Customised Electrodes and OEM Components

27
MEINSBERG ELECTRODES
FOR LABORATORY AND PROCESS

We develop and manufacture electrodes and sensors for measurement of pH value, redox potential (ORP), conductivity, oxygen, carbon dioxide, temperature, chlorine and other water disinfects.

Laboratory Electrodes fulfil all requirements for precise and accurate measurements in laboratory and field in connection with laboratory, pocket and field meters. Beyond that we offer a complete range of electrodes for the corrosion measurement technique.

Process Electrodes are unique specialists specifically designed to withstand the most extreme physical and chemical conditions in process applications for water technology, process chemistry, biotechnology, and food and pharma industry. These electrodes, tailored to specific applications, combine high quality, long life and stability with competitive price.

This catalogue presents our standard range of laboratory and process electrodes and sensors. Two reviews give a brief overview of the most usual applications and our recommendations in combination with measuring hints for selection of the “right” electrode or sensor to your specific application. We will gladly provide you with advice regarding other applications or deviating conditions.
The potentiometric pH and redox measurement is a measurement of the voltage between two single electrodes (half cells). The measurement electrode changes its potential in dependence on pH value or redox potential of the measured medium. The reference electrode generates a stable voltage against, nearly independent from the measured medium. In case of pH measurement the measurement electrode contains a special pH sensitive glass membrane. Usually a platinum electrode is used as measurement electrode in redox potential (ORP) measurements. The reference electrode is either filled with liquid (refillable) or gel (non-refillable) electrolyte. Stable reference systems with a special separated silver chloride reservoir are the basis for reliable long life pH and redox combination electrodes. The innovative gel or polymer electrolyte features low-maintenance, easy application and process integration. The diaphragm of the reference electrode secures the connection to the sample. High performance ceramic diaphragms, special large-sized ring-shaped sleeves or holes feature reliable liquid junctions.

The combination electrode contains a measurement and a reference electrode in a common unit.

The pH value of the measured medium as well as the electrode signal change according to its temperature. Only the simultaneous measurement of pH and sample temperature features automatic temperature compensation of the electrode signal and the comparison of measurement results.

Meinsberg pH Combination Electrodes with integrated temperature sensor result in substantially more precise pH measurements due to automatic temperature compensation and deliver more information because of the simultaneous measurement of pH and temperature.
Long-term stable and reliable electrodes and sensors are the result of a lot of experiences, continuous development and high manufacturing quality. Each electrode has to fulfil the strong quality specifications of the final test before dispatch. Optimised pH sensitive glasses and diaphragms, specifically developed nearly maintenance free electrolytes, the specific construction and design as well as storage, operation, maintenance and process integration influence the live time of the electrodes / sensors and the reliability of the measurement.

We design and manufacture electrodes and sensors as reliable tools in accordance with the specific applications.

Regularly and correct calibration, adjustment and maintenance are important points for reliable measurements. The calibration delivers information about the actual specifications of the electrode/sensor and results in an adaptation of the measuring instrument to the specific parameters of the electrode. pH buffer solutions are used for determination of the actual parameters “isopotential point” and “electrode slope” of the pH electrode. The slope is the voltage of the pH electrode per pH unit. Today usual pH combination electrodes give an offset voltage of about 0 mV at pH 7 (isopotential point).

The accuracy of the measurement results depends on the regularly calibration and maintenance, the specific application and measuring conditions as well as the ageing of the electrode. Please ask for more information to select the optimal electrode for your application!
LABORATORY ELECTRODES

<table>
<thead>
<tr>
<th>Application recommendations</th>
<th>pH</th>
<th>redox (ORP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>general aqueous solutions, dilute solutions</td>
<td>GA 151/SE 21</td>
<td>EMC 30</td>
</tr>
<tr>
<td></td>
<td>EGA 151</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGA 173</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGA 141</td>
<td></td>
</tr>
<tr>
<td>food, drinks</td>
<td>EGA 151</td>
<td>EMC 30</td>
</tr>
<tr>
<td></td>
<td>EGA 141</td>
<td></td>
</tr>
<tr>
<td>penetration measurements in meat, cheese etc.</td>
<td>EGA 181</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGA 184</td>
<td></td>
</tr>
<tr>
<td>cooling water, raw water, wastewater</td>
<td>EGA 151</td>
<td>EMC 30</td>
</tr>
<tr>
<td></td>
<td>EGA 131</td>
<td>EMC 130</td>
</tr>
<tr>
<td></td>
<td>EGA 173</td>
<td></td>
</tr>
<tr>
<td>low ionic strength samples, suspensions, cosmetics, water-soluble lacquers</td>
<td>EGA 161</td>
<td>EMC 30</td>
</tr>
<tr>
<td></td>
<td>GA 151/SE 20</td>
<td></td>
</tr>
<tr>
<td>field use, aquarium water, surface water, swimming pools</td>
<td>EGA 131</td>
<td>EMC 130</td>
</tr>
<tr>
<td></td>
<td>EGA 133</td>
<td>EMC 133</td>
</tr>
<tr>
<td></td>
<td>EGA 141</td>
<td>EMC 134</td>
</tr>
<tr>
<td></td>
<td>EGA 142</td>
<td></td>
</tr>
<tr>
<td>small volumes</td>
<td>EGA 501</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGA 801</td>
<td></td>
</tr>
<tr>
<td>rapidly changing temperatures, temperature compensated measurements</td>
<td>EGA 141</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGA 142</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGA 143</td>
<td></td>
</tr>
</tbody>
</table>
These Ag/AgCl and calomel reference electrodes feature application in very small volumes and general laboratory use. Some of the electrodes are equipped with a standard taper NS 7 and enable application in closed vessels i.e. in corrosion measuring cells.

-5 ... 80 deg C
glass shaft Ø 5 mm
refillable electrolyte sat. KCl
KE 11:
0 ... 60 deg C, Kalomel
SE 11/NSK 7, KE 11/NSK 7:
electrode shaft equipped with a NS-7 glass cone
SE 11, KE 11,
SE 11/NSK 7, KE 11/NSK 7:
4 mm socket plug head
This glass-bodied screened pH sensing half cell must be used in conjunction with a reference electrode for general precision pH measurement.

-5 ... 80 deg C
- pH 0 ... 14
- isopotential point pH 7 Ag
- glass shaft Ø 12 mm
- shaft length 120 mm
- cylinder membrane

GA 151:
- fixed cable 1 m, German DIN plug
- lab plug head S7-system

GA 151 L:
- lab plug head S7-system

EGA 151
- refillable electrolyte 3 M KC1
- ceramic diaphragm

EGA 173:
- gel electrolyte (non-refillable),
- ring-shaped sleeve junction

EGA 151, EGA 173:
- fixed cable 1 m, German DIN plug
- lab plug head S7-system

EGA 151 L, EGA 173 L:
- lab plug head S7-system

These pH combination electrodes cover excellently all the usual measurement tasks performed in laboratories. The model EGA 173 features low maintenance because of the high stability gel matrix with embedded KC1 and a large-sized ring-shaped glass sleeve junction.

-5 ... 80 deg C
- pH 0 ... 14
- glass shaft Ø 12 mm
- shaft length 120 mm
- cylinder membrane

EGA 151:
- fixed cable 1 m, German DIN plug

EGA 151 L, EGA 173 L:
- lab plug head S7-system
These pH combination electrodes are the ideal choice for student and rugged use especially in connection with pocket meters. The electrode EGA 133 features gel electrolyte for low maintenance and black plastic body.

-5 ... 80 deg C
pH 0 ... 14
PSU plastic shaft Ø 12 mm
shaft length 120 mm
2 ceramic diaphragms
EGA 131:
refillable electrolyte 3 M KCl,
transparent shaft,
ball membrane
EGA 133:
gel electrolyte (non-refillable),
black shaft,
cylinder membrane
EGA 131, EGA 133:
fixed cable 1 m, German DIN plug
EGA 131 L, EGA 133 L:
lab plug head 57-system

EGA 141
EGA 143

Integrated temperature sensor recommends these electrodes especially for temperature compensated measurements in laboratory even under difficult extraordinary conditions. Corresponding to your meter these electrodes are available with an integral platinum resistance sensor Pt 1000 or an NTC 30 kΩ (ATC probe).

-5 ... 80 deg C, pH 0 ... 14
glass shaft Ø 12 mm
shaft length 120 mm
cylinder membrane
EGA 141/Pt 1000:
refillable electrolyte 3 M KCl,
ceramic diaphragm, integrated Pt 1000
EGA 141/TFK:
refillable electrolyte 3 M KCl,
ceramic diaphragm, integrated NTC 30 kΩ
EGA 143/Pt 1000:
gel electrolyte (non-refillable), ring-shaped sleeve junction, integrated Pt 1000
EGA 143/TFK:
gel electrolyte (non-refillable), ring-shaped sleeve junction, integrated NTC 30 kΩ
EGA 141/..., EGA 143/...:
fixed cable 1 m, German DIN plug and banana plug 4 mm
EGA 142

pH/Temperature Combination Electrode

This electrode with built-in temperature probe and rugged plastic shaft features temperature compensated pH measurements in connection with pocket meters. Corresponding to your meter these electrodes are available with an integral platinum resistance sensor Pt 1000 or an NTC 30 kOhm (ATC probe).

-5 ... 80 deg C
pH 0 ... 14
PSU plastic shaft Ø 12 mm
shaft length 120 mm
cylinder membrane
gel electrolyte (non-refillable)
2 ceramic diaphragms
EGA 142/Pt 1000:
integrated Pt 1000
EGA 142/TFK:
integrated NTC 30 kΩ

EGA 142/...:
fixed cable 1 m, German DIN plug and banana plug 4 mm

EGA 161

pH Combination Electrode

This pH combination electrode with detachable ground sleeve diaphragm eliminates nearly all measuring problems in samples with low ionic strength (i.e. drinking water), suspensions, protein containing media and partially aqueous samples. The reference electrode cartridge is filled with electrolyte solution (3 M KCl).

-5 ... 80 deg C
pH 0 ... 14
glass shaft Ø 12 mm
shaft length 120 mm
cylinder membrane
refillable electrolyte 3 M KCl
glass sleeve junction

EGA 161:
fixed cable 1 m, German DIN plug
EGA 161 L:
lab plug head S7-system
These pH combination electrodes feature superior performance for measurements in small volume samples, test tubes and flasks.

0 ... 60 deg C
pH 2 ... 11

glass shaft Ø 8 / 6 mm
shaft length 100 mm
6 mm section is 30 mm long

refillable electrolyte 3 M KCl

EGA 501:
ball membrane
EGA 801:
spear membrane

EGA 501, EGA 801:
fixed cable 1 m, German DIN plug
EMC 30

This redox (ORP) combination electrode is used for measurement of reduction/oxidation potential and redox titration in general laboratory applications. The reference electrode cartridge is filled with electrolyte solution (3 M KCl). The platinum disc melted onto the glass increases mechanical stability and features minimal flow dependency.

-5 ... 80 deg C
Ag/AgCl reference system
glass shaft Ø 12 mm
shaft length 120 mm
platinum disc Ø 6 mm
refillable electrolyte 3 M KCl
ceramic diaphragm

EMC 30:
fixed cable 1 m, German DIN plug
EMC 30 L:
lab plug head S7-system

EMC 130, 133, 134

These plastic-bodied redox (ORP) combination electrodes are the ideal choice for rugged use in general lab/field measurement especially with pocket meters. The electrodes EMC 133 and EMC 134 feature low maintenance because of the gel electrolyte.

-5 ... 80 deg C
Ag/AgCl reference system
PSU plastic shaft Ø 12 mm
shaft length 120 mm
ceramic diaphragms

EMC 130:
platinum disc Ø 6 mm,
refillable electrolyte 3 M KCl,
transparent shaft

EMC 133:
platinum disc Ø 6 mm,
gel electrolyte (non-refillable),
black shaft

EMC 134:
platinum rod Ø 0.8 mm,
gel electrolyte (non-refillable),
black shaft

EMC 130, EMC 133, EMC 134:
fixed cable 1 m, German DIN plug
EMC 130 L, EMC 133 L, EMC 134 L:
lab plug head S7-system
These conductivity cells with two large parallel platinum sheets melted onto the glass feature identical dimensions like pH electrodes and a wide conductivity measurement range in conjunction with field and laboratory meters. Models LTG 1/23 and LTG 0,1/23 with integrated temperature sensor Pt 1000 enable automatic temperature compensation.

-5 ... 100 deg C
platinum electrodes
glass shaft Ø 12 mm
shaft length 120 mm
LTG 1/24:
cell constant about 1 cm⁻¹, Pt platinized
LTG 1/23:
cell constant about 1 cm⁻¹, integrated Pt 1000
LTG 0,1/24:
cell constant about 0.1 cm⁻¹, Pt bright
LTG 0,1/23:
cell constant about 0.1 cm⁻¹, integrated Pt 1000

Temperature Sensor

This temperature sensor is specifically designed for automatic temperature compensation of pH measurements or in connection with PC or laboratory multi parameter instrumentations. The glass shaft features high chemical resistant and dimensions identical to pH electrodes. The sensor contains a platinum resistor Pt 1000 in accordance with DIN IEC 751 class A.

-10 ... 100 deg C
glass shaft Ø 12 mm
shaft length 120 mm

Pt 1000:
fixed cable 1 m, 2 x banana plug 4 mm
Pt 1000 L:
lab plug head S7-system

Conductivity Cells

Pt 1000
In addition to the application of this complete measuring cell in conjunction with corrosion measuring systems the cell features ideal use for general measuring tasks in electrochemistry, research, education and quality assurance. The double-walled cell container with tube connections is suitable for connection to a thermostat. The cell top enables a lot of possibilities for insertion of electrodes and connections with standard cones.

double-walled cell container
- Ø about 130 mm
- volume max. 250 ml
- cell top Ø about 120 mm
- max. 110 deg C

Standard insertion parts:
- Platinum Counter Electrode 4 cm²
- Reference Electrode KE 11 / NSK 7
- Liquid Junction Tube
- Intermediate Vessel
- Gas in- and outlet
- Specimen Holder (working electrode)
- Thermometer (optional)
- KPG stirrer (optional)

Connection cables
Connection cables are used for all leadless electrodes and sensors equipped with a Euro-Standard plug head S7-system. The plug head S7-system offers a clear advantage over fixed cable connections because the life of a cable is appreciably longer than those of a sensor. In addition the different versions of connection cables enable compatibility of the sensors and electrodes with pH/millivolt meters of all types worldwide.

- low-noise coaxial cable
 - standard length 1 m, diameter about 3 mm
 - electrode connection:
 - plug head S7 connector
 - **Koax 3, 5:**
 - for pH glass electrodes, pH and redox combination electrodes
 - **Koax 4:**
 - for reference electrodes
 - **Koax 6:**
 - for temperature sensors and conductivity cells

- **Koax 3:**
 - S7 plug / German DIN plug (DIN 19262)
- **Koax 4:**
 - S7 plug / banana plug 4 mm
- **Koax 5:**
 - S7 plug / BNC plug
- **Koax 6:**
 - S7 plug / 2 x banana plug 4 mm
<table>
<thead>
<tr>
<th>Application recommendations</th>
<th>pH</th>
<th>Redox (ORP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>general aqueous samples, dilute solutions</td>
<td>GA 151 / SE 21</td>
<td>EMC 33</td>
</tr>
<tr>
<td></td>
<td>GA 151 / SE 23</td>
<td>EMC 173</td>
</tr>
<tr>
<td></td>
<td>EGA 150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGA 153</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGA 173</td>
<td></td>
</tr>
<tr>
<td>food, drinks</td>
<td>EGA 153</td>
<td>EMC 33</td>
</tr>
<tr>
<td></td>
<td>EGA 173</td>
<td>EMC 173</td>
</tr>
<tr>
<td>process water, raw water, wastewater, surface water</td>
<td>EGA 150</td>
<td>EMC 33</td>
</tr>
<tr>
<td></td>
<td>EGA 153</td>
<td>EMC 34</td>
</tr>
<tr>
<td></td>
<td>EGA 173</td>
<td>EMC 173</td>
</tr>
<tr>
<td></td>
<td>EGA 142</td>
<td>EMC 133</td>
</tr>
<tr>
<td></td>
<td>EGA 133</td>
<td>EMC 233 K/PI</td>
</tr>
<tr>
<td></td>
<td>EGA 233 K/PI</td>
<td></td>
</tr>
<tr>
<td>swimming pools</td>
<td>EGA 133</td>
<td>EMC 34</td>
</tr>
<tr>
<td></td>
<td>EGA 150</td>
<td>EMC 133</td>
</tr>
<tr>
<td></td>
<td>EGA 134</td>
<td></td>
</tr>
<tr>
<td>heavily polluted waste water, water treatment plants</td>
<td>EGA 173</td>
<td>EMC 173</td>
</tr>
<tr>
<td></td>
<td>EGA 143</td>
<td>EMC 233 K/PI</td>
</tr>
<tr>
<td></td>
<td>EGA 233 K/PI</td>
<td></td>
</tr>
<tr>
<td>electroplating</td>
<td>EGA 233</td>
<td>EMC 233</td>
</tr>
<tr>
<td></td>
<td>EGA 153</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGA 173</td>
<td></td>
</tr>
<tr>
<td>low ionic strength samples, drinking water, suspensions, water-soluble lacquers, boiler feed water</td>
<td>GA 151 / SE 20</td>
<td>EMC 173</td>
</tr>
<tr>
<td></td>
<td>EGA 161</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGA 173</td>
<td></td>
</tr>
<tr>
<td>process chemistry</td>
<td>EGP 150</td>
<td></td>
</tr>
<tr>
<td>biotechnology, steam sterilisation (fermenters)</td>
<td>EGV 150</td>
<td></td>
</tr>
<tr>
<td>rapidly changing temperatures, ATC</td>
<td>EGA 142</td>
<td>EMC 173</td>
</tr>
<tr>
<td></td>
<td>EGA 143</td>
<td></td>
</tr>
</tbody>
</table>
Reference Electrodes

Reference electrodes with internal Ag/AgCl reference system are used in connection with single pH, redox or ion-selective measurement electrodes. SE 23 features low maintenance, application without external pressure compensation and 3 ceramic diaphragms for minimal flow dependency.

-5 ... 80 deg C
glass shaft Ø 12 mm
immersion length 120 mm

SE 20:
refillable electrolyte sat. KCl,
detachable sleeve junction,
glass shaft with side-arm

SE 21:
refillable electrolyte sat. KCl,
ceramic diaphragm,
glass shaft with side-arm

SE 23:
gel electrolyte (non-refillable),
3 ceramic diaphragms,
max. 6 bar

SE 20 K, SE 21 K, SE 23 K:
fixed cable 5 m, without connector
SE 23 I:
PG 13.5 threaded plug head S7-system

pH Glass Electrode

This glass-bodied screened pH sensing half cell must be used in conjunction with a reference electrode for general precision pH measurement. Special version with extra thick pH glass membrane features application in abrasive samples.

-5 ... 80 deg C
pH 0...14
max. 6 bar
isopotential point pH 7 Ag
glass shaft Ø 12 mm
immersion length 120 mm
cylinder membrane

GA 151 K:
fixed cable 5 m, without connector
GA 151 I:
PG 13.5 threaded plug head S7-system
These pH combination electrodes feature low maintenance and easy process integration because of the high stability gel matrix electrolyte with embedded KCl. Different versions with one or several ceramic diaphragms and special large-sized ring-shaped glass sleeve junction make these electrodes to the ideal choice for process application even in heavily polluted waste water, sewage, swimming pool water treatment and electroplating.

-5 ... 80 deg C, pH 0 ... 14, max. 6 bar
glass shaft Ø 12 mm
immersion length 120 mm
cylinder membrane
gel electrolyte (non-refillable)
EGA 150: 1 ceramic diaphragm
EGA 153: 3 ceramic diaphragms
EGA 173: ring-shaped sleeve junction

EGA 150 K/PG,
EGA 153 K/PG,
EGA 173 K/PG:
fixed cable 5 m and hex nut PG 13.5
EGA 150 I,
EGA 153 I,
EGA 173 I:
PG 13.5 threaded plug head S7-system

These electrodes with robust plastic shaft with integrated pH membrane protection combine low maintenance and rugged design for general process applications. The double-junction Ag/AgCl reference system of the electrode EGA 233 offers long-term stability even in heavily polluted mediums as well as in mediums containing harmful substances.

-5 ... 80 deg C
pH 0 ... 14
max. 6 bar
PSU shaft Ø 12 mm, black
immersion length 120 mm
cylinder membrane
gel electrolyte (non-refillable)
2 ceramic diaphragms
EGA 133:
Ag/AgCl reference cartridge
EGA 233:
double-junction reference system

EGA 133 I, EGA 233 I:
PG 13.5 threaded plug head S7-system
This pH combination electrode with detachable glass ground sleeve diaphragm and large low-resistant pH membrane glass eliminates nearly all measuring problems in samples with low ionic strength, like ultra clean water and drinking water. Connect the side arm to a 3 M KCl electrolyte reservoir and adjust the flow with the glass sleeve for optimal performance.

-5 ... 80 deg C
pH 0 ... 14
max. 0.5 bar, or higher with external pressure load,
glass shaft Ø 12 mm with side tube connector,
immersion length 120 mm
cylinder membrane
 refillable electrolyte 3 M KCl
glass sleeve junction

EGA 161 K/PG:
 fixed cable 5 m and hex nut PG 13.5
EGA 161 L/PG:
 lab plug head S7-system and hex nut PG 13.5

These pH combination electrodes feature low maintenance and easy process integration because of the special high stability polymer electrolyte with embedded KCl and increased long-term stability for continuous process applications even under extreme conditions. The electrode EGP 150 is recommended for process chemistry at high temperatures and extreme pH of the sample. The electrode EGV 150 is ideal for applications in biotechnology and pharma industry as well as for pilot and laboratory plants and features long life and stable calibration after sterilization or autoclaving.

max. 6 bar, glass shaft Ø 12 mm,
immersion length 120 mm,
cylinder membrane, polymer electrolyte (non-refillable), ceramic diaphragms

EGP 150:
 extreme pH values and high temp., 0...100 deg C, pH 0 ... 14

EGV 150:
 steam sterilizable max. 135 deg C,
operation 0 ... 60 deg C, pH 2 ... 10

EGP 150 L, EGV 150 L:
PG 13.5 threaded plug head S7-system
pH/Redox (ORP) Combination Electrodes

This nearly maintenance free process electrodes feature extremely rugged design, additional protection guard, fixed watertight cable connection, extremely long term stability and easy flow, immersion and submersion installation especially in water technology.

-5 ... 65 deg C
max. 6 bar
PVC shaft Ø about 27 mm
total length 150 mm
gel electrolyte (non-refillable)
2 ceramic diaphragms
double junction reference system
screw-in thread ¼" NPT on both ends
EGA 233 K/Ph:
pH combination electrode, pH 0 ... 14
EMC 233 K/Ph:
redox (ORP) combination electrode; platinum disc Ø 6 mm
EGA 233 K/Ph, EMC 233 K/Ph:
fixed cable (IP 67) standard length 5 m
without connector

EGA 142 SMEK, EGA 143 SMEK:
PG 13.5 threaded SMEK plug head
EGA 142 VP, EGA 143 VP:
PG 13.5 threaded VarioPin plug head

pH/Redox (ORP)
Combination Electrodes
PI-W

This nearly maintenance free process electrodes feature extremely rugged design, additional protection guard, fixed watertight cable connection, extremely long term stability and easy flow, immersion and submersion installation especially in water technology.

-5 ... 65 deg C
max. 6 bar
PVC shaft Ø about 27 mm
total length 150 mm
gel electrolyte (non-refillable)
2 ceramic diaphragms
double junction reference system
screw-in thread ¼" NPT on both ends
EGA 233 K/Ph:
pH combination electrode, pH 0 ... 14
EMC 233 K/Ph:
redox (ORP) combination electrode; platinum disc Ø 6 mm
EGA 233 K/Ph, EMC 233 K/Ph:
fixed cable (IP 67) standard length 5 m
without connector

EGA 142 SMEK, EGA 143 SMEK:
PG 13.5 threaded SMEK plug head
EGA 142 VP, EGA 143 VP:
PG 13.5 threaded VarioPin plug head

pH/Redox (ORP)
Combination Electrodes
PI-W

This nearly maintenance free process electrodes feature extremely rugged design, additional protection guard, fixed watertight cable connection, extremely long term stability and easy flow, immersion and submersion installation especially in water technology.

-5 ... 65 deg C
max. 6 bar
PVC shaft Ø about 27 mm
total length 150 mm
gel electrolyte (non-refillable)
2 ceramic diaphragms
double junction reference system
screw-in thread ¼" NPT on both ends
EGA 233 K/Ph:
pH combination electrode, pH 0 ... 14
EMC 233 K/Ph:
redox (ORP) combination electrode; platinum disc Ø 6 mm
EGA 233 K/Ph, EMC 233 K/Ph:
fixed cable (IP 67) standard length 5 m
without connector

EGA 142 SMEK, EGA 143 SMEK:
PG 13.5 threaded SMEK plug head
EGA 142 VP, EGA 143 VP:
PG 13.5 threaded VarioPin plug head

pH/Redox (ORP)
Combination Electrodes
PI-W

This nearly maintenance free process electrodes feature extremely rugged design, additional protection guard, fixed watertight cable connection, extremely long term stability and easy flow, immersion and submersion installation especially in water technology.

-5 ... 65 deg C
max. 6 bar
PVC shaft Ø about 27 mm
total length 150 mm
gel electrolyte (non-refillable)
2 ceramic diaphragms
double junction reference system
screw-in thread ¼" NPT on both ends
EGA 233 K/Ph:
pH combination electrode, pH 0 ... 14
EMC 233 K/Ph:
redox (ORP) combination electrode; platinum disc Ø 6 mm
EGA 233 K/Ph, EMC 233 K/Ph:
fixed cable (IP 67) standard length 5 m
without connector

EGA 142 SMEK, EGA 143 SMEK:
PG 13.5 threaded SMEK plug head
EGA 142 VP, EGA 143 VP:
PG 13.5 threaded VarioPin plug head

pH/Redox (ORP)
Combination Electrodes
PI-W

This nearly maintenance free process electrodes feature extremely rugged design, additional protection guard, fixed watertight cable connection, extremely long term stability and easy flow, immersion and submersion installation especially in water technology.

-5 ... 65 deg C
max. 6 bar
PVC shaft Ø about 27 mm
total length 150 mm
gel electrolyte (non-refillable)
2 ceramic diaphragms
double junction reference system
screw-in thread ¼" NPT on both ends
EGA 233 K/Ph:
pH combination electrode, pH 0 ... 14
EMC 233 K/Ph:
redox (ORP) combination electrode; platinum disc Ø 6 mm
EGA 233 K/Ph, EMC 233 K/Ph:
fixed cable (IP 67) standard length 5 m
without connector

EGA 142 SMEK, EGA 143 SMEK:
PG 13.5 threaded SMEK plug head
EGA 142 VP, EGA 143 VP:
PG 13.5 threaded VarioPin plug head

pH/Redox (ORP)
Combination Electrodes
PI-W

This nearly maintenance free process electrodes feature extremely rugged design, additional protection guard, fixed watertight cable connection, extremely long term stability and easy flow, immersion and submersion installation especially in water technology.

-5 ... 65 deg C
max. 6 bar
PVC shaft Ø about 27 mm
total length 150 mm
gel electrolyte (non-refillable)
2 ceramic diaphragms
double junction reference system
screw-in thread ¼" NPT on both ends
EGA 233 K/Ph:
pH combination electrode, pH 0 ... 14
EMC 233 K/Ph:
redox (ORP) combination electrode; platinum disc Ø 6 mm
EGA 233 K/Ph, EMC 233 K/Ph:
fixed cable (IP 67) standard length 5 m
without connector

EGA 142 SMEK, EGA 143 SMEK:
PG 13.5 threaded SMEK plug head
EGA 142 VP, EGA 143 VP:
PG 13.5 threaded VarioPin plug head

pH/Redox (ORP)
Combination Electrodes
PI-W

This nearly maintenance free process electrodes feature extremely rugged design, additional protection guard, fixed watertight cable connection, extremely long term stability and easy flow, immersion and submersion installation especially in water technology.

-5 ... 65 deg C
max. 6 bar
PVC shaft Ø about 27 mm
total length 150 mm
gel electrolyte (non-refillable)
2 ceramic diaphragms
double junction reference system
screw-in thread ¼" NPT on both ends
EGA 233 K/Ph:
pH combination electrode, pH 0 ... 14
EMC 233 K/Ph:
redox (ORP) combination electrode; platinum disc Ø 6 mm
EGA 233 K/Ph, EMC 233 K/Ph:
fixed cable (IP 67) standard length 5 m
without connector

EGA 142 SMEK, EGA 143 SMEK:
PG 13.5 threaded SMEK plug head
EGA 142 VP, EGA 143 VP:
PG 13.5 threaded VarioPin plug head

pH/Redox (ORP)
Combination Electrodes
PI-W

This nearly maintenance free process electrodes feature extremely rugged design, additional protection guard, fixed watertight cable connection, extremely long term stability and easy flow, immersion and submersion installation especially in water technology.

-5 ... 65 deg C
max. 6 bar
PVC shaft Ø about 27 mm
total length 150 mm
gel electrolyte (non-refillable)
2 ceramic diaphragms
double junction reference system
screw-in thread ¼" NPT on both ends
EGA 233 K/Ph:
pH combination electrode, pH 0 ... 14
EMC 233 K/Ph:
redox (ORP) combination electrode; platinum disc Ø 6 mm
EGA 233 K/Ph, EMC 233 K/Ph:
fixed cable (IP 67) standard length 5 m
without connector

EGA 142 SMEK, EGA 143 SMEK:
PG 13.5 threaded SMEK plug head
EGA 142 VP, EGA 143 VP:
PG 13.5 threaded VarioPin plug head

pH/Redox (ORP)
Combination Electrodes
PI-W

This nearly maintenance free process electrodes feature extremely rugged design, additional protection guard, fixed watertight cable connection, extremely long term stability and easy flow, immersion and submersion installation especially in water technology.

-5 ... 65 deg C
max. 6 bar
PVC shaft Ø about 27 mm
total length 150 mm
gel electrolyte (non-refillable)
2 ceramic diaphragms
double junction reference system
screw-in thread ¼" NPT on both ends
EGA 233 K/Ph:
pH combination electrode, pH 0 ... 14
EMC 233 K/Ph:
redox (ORP) combination electrode; platinum disc Ø 6 mm
EGA 233 K/Ph, EMC 233 K/Ph:
fixed cable (IP 67) standard length 5 m
without connector

EGA 142 SMEK, EGA 143 SMEK:
PG 13.5 threaded SMEK plug head
EGA 142 VP, EGA 143 VP:
PG 13.5 threaded VarioPin plug head

pH/Redox (ORP)
Combination Electrodes
PI-W

This nearly maintenance free process electrodes feature extremely rugged design, additional protection guard, fixed watertight cable connection, extremely long term stability and easy flow, immersion and submersion installation especially in water technology.

-5 ... 65 deg C
max. 6 bar
PVC shaft Ø about 27 mm
total length 150 mm
gel electrolyte (non-refillable)
2 ceramic diaphragms
double junction reference system
screw-in thread ¼" NPT on both ends
EGA 233 K/Ph:
pH combination electrode, pH 0 ... 14
EMC 233 K/Ph:
redox (ORP) combination electrode; platinum disc Ø 6 mm
EGA 233 K/Ph, EMC 233 K/Ph:
fixed cable (IP 67) standard length 5 m
without connector

EGA 142 SMEK, EGA 143 SMEK:
PG 13.5 threaded SMEK plug head
EGA 142 VP, EGA 143 VP:
PG 13.5 threaded VarioPin plug head

pH/REDOX (ORP)
These redox (ORP) combination electrodes with gel electrolyte, ceramic diaphragm or special large-sized ring-shaped glass sleeve junction are particularly directed towards applications involving the monitoring and control of industrial waste water, swimming pool water treatment and electroplating. The platinum disc melted onto the glass features high mechanical stability and flow direction independent signals.

\(-5 \ldots 80 \text{ deg C}, \text{ max. } 6 \text{ bar} \)

Ag/AgCl reference system

glass shaft Ø 12 mm

glass shaft Ø 12 mm

glass shaft Ø 12 mm

EMC 33: ceramic diaphragm

platinum disc Ø 6 mm,

EMC 34: ceramic diaphragm

platinum rod Ø 0.8 mm

EMC 173: ring-shaped sleeve junction,

platinum disc Ø 6 mm,

EMC 33 K/PG, EMC 173 K/PG:

fixed cable 5 m and hex nut PG 13.5

EMC 33 I, EMC 34 I, EMC 173 I:

PG 13.5 threaded plug head S7-system

These plastic-bodied redox (ORP) combination electrodes are the ideal choice for rugged use in general industrial measurements. The double-junction Ag/AgCl reference cartridge system of the electrode EMC 233 offers long-term stability even in heavily polluted mediums as well as in mediums containing harmful substances.

\(-5 \ldots 80 \text{ deg C} \)

Ag/AgCl reference system

max. 6 bar

PSU shaft Ø 12 mm

immersion length 120 mm

gel electrolyte (non-refillable)

deck 2 ceramic diaphragms

EMC 133: platinum disc Ø 6 mm

EMC 134: platinum rod Ø 0.8 mm

EMC 233: platinum disc Ø 6 mm,

double-junction reference system

EMC 133 I, EMC 134 I, EMC 233 I:

PG 13.5 threaded plug head S7-system
LTC 1

Conductivity Cell

This contamination-proof 2-electrode conductivity cell is ideal for general applications in waste water. The special graphite electrodes sealed in epoxy feature high mechanical stability, easy purification and low maintenance. A temperature sensor Pt 1000 with low response time is integrated in the cell LTC 1/23 for automatic temperature compensation.

-5 ... 80 °C
max. 6 bar
graphite electrodes
PSU shaft Ø 12 mm, black
immersion length 120 mm

LTC 1/24:
cell constant about 1 cm⁻¹
LTC 1/23:
cell constant about 1 cm⁻¹;
built-in Pt 1000

LTC 1/24 I:
PG 13.5 threaded plug head S7-system
LTC 1/23 K/PG,
fixed cable 5 m and hex nut PG 13.5
LTC 1/23 SMEK:
PG 13.5 threaded SMEK plug head,
connection cable K 18

LTG 1

Conductivity Cells

These conductivity glass-body cells with two large parallel platinum electrodes feature high precision for universal application, even in partly aqueous and highly aggressive media as well as in pure or drinking water. A temperature sensor Pt 1000 is integrated in the cells LTG 1/23 and LTG 0,1/23 for automatic temperature compensation.

-5 ... 100 deg C, max. 6 bar
glass shaft Ø 12 mm
immersion length 120 mm
platinum electrodes

LTG 1/24:
cell constant about 1 cm⁻¹, Pt platinized
LTG 1/23:
cell constant about 1 cm⁻¹, built-in Pt 1000
LTG 0,1/24:
cell constant about 0.1 cm⁻¹, Pt bright
LTG 0,1/23:
cell constant about 0.1 cm⁻¹,
built-in Pt 1000

LTG 1/24 I, LTG 0,1 I:
PG 13.5 threaded plug head S7-system
LTG 1/23 K/PG, LTG 0,1/23 K/PG:
fixed cable 5 m and hex nut PG 13.5
LTG 1/23 SMEK, LTG 0,1/23 SMEK:
PG 13.5 threaded SMEK plug head,
connection cable K 18
This membrane covered amperometric oxygen sensor combines rugged design, identical dimensions to pH electrodes, integrated temperature sensor for automatic temperature compensation, high long-term stability and extremely low maintenance. Short response time, rugged multi-layer membrane, low flow sensitivity and short polarisation time make this sensor ideal for pilot and laboratory plants, water technology, pools and fish farms.

-5 ... 45 deg C
0 ... 20 mg O₂/l
max. 1 bar
PSU shaft Ø 12 mm
immersion length 120 mm
built-in Pt 1000
max. cable length 20 m

MF 41 K/PG:
fixed cable 5 m and hex nut PG 13.5
MF 41 SMEK:
PG 13.5 threaded SMEK plug head, connection cable K 39

MF 41

MF 41 K/PG:
fixed cable 5 m and hex nut PG 13.5
MF 41 SMEK:
PG 13.5 threaded SMEK plug head, connection cable K 39

MF 39

MF 39 features low maintenance, robust mechanical construction with threaded plastic shaft and plug head-cable connection system, extremely foul-resistant and rugged multi-layer membrane, extended operation and minimal flow requirement. This sensor is the ideal choice for monitoring and control of aeration in waste water treatment plants and results in high long-term stability and easy air calibration.

-5 ... 50 deg C
0 ... 60 mg O₂/l
max. 3 bar
PG 16 threaded plastic shaft Ø 18 mm
immersion length 120 mm
built-in Pt 1000
max. cable length 20 m

MF 39 SMEK:
SMEK plug head, connection cable K 39
A significant benefit of plug head-cable connection systems is that cable installation has to be carried out only once and is therefore essentially permanent. These systems offer a clear cost advantage over standard fixed cable installations because the life of a cable is appreciably longer than those of a sensor. The multi wire and triaxial cables feature simultaneous measurement of several parameters i.e. pH and temperature.

Temperature Sensors

These temperature sensors are specifically designed for automatic temperature compensation and temperature measurement in conjunction with electrochemical sensors. The dimensions are identical to those of pH electrodes and the sensors contain a platinum resistor in accordance with DIN IEC 751 class A. The model with MultiPin SANEK plug head with the cable K 18 in 3- or 4-wire connections reduces failures caused by the cable resistance especially if longer cable connections are requested.

-10 ... 100 deg C, max. 6 bar
glass shaft Ø 12 mm
immersion length 120 mm

Pt 100:
platinum resistance sensor Pt 100
Pt 1000:
platinum resistance sensor Pt 1000

Pt 100 K/Pt, Pt 1000 K/Pt:
fixed cable 5 m and hex nut PG 13.5
Pt 100 I, Pt 1000 I:
PG 13.5 threaded plug head S7-system
Pt 100 SANEK, Pt 1000 SANEK:
PG 13.5 threaded SANEK plug head, connection cable K 18

Connection Cables

A significant benefit of plug head-cable connection systems is that cable installation has to be carried out only once and is therefore essentially permanent. These systems offer a clear cost advantage over standard fixed cable installations because the life of a cable is appreciably longer than those of a sensor. The multi wire and triaxial cables feature simultaneous measurement of several parameters i.e. pH and temperature.

standard lengths 2, 5, 10, 15 m, diameter about 5 mm

K 18, K 39:
shielded rugged multi wire cable with SMEK plug head cable connector
K 43, K 50, K 51, K 52:
low-noise coaxial measuring cable with plug head S7 cable connector
K 54:
low-noise triaxial cable with SMEK plug head cable connector for pH/Temp. electrodes

K 18, K 39, K 54:
SANEK plug / stripped tinned ends
K 43: S7 plug / stripped tinned ends
K 50:
S7 plug / German DIN plug (DIN 19262)
K 51: S7 plug / BNC plug
K 52: S7 plug on both ends
INSTRUCTIONS FOR USING pH AND REDOX ELECTRODES

Storage
All electrodes are supplied tested and ready for use. Unless advised to the contrary, electrodes should be stored within the protective cap filled with a 3 Mol solution of KCl. Storage temperature should be between 10 deg and 30 deg C, but never below -5 deg C. Should any KCl solution leak from the protective cap during storage or transit (usually seen as a white salt), then it may be easily removed by rinsing the electrode in water. The electrode will not be affected by this leakage.

Calibration
Carefully rinse electrodes with deionised/distilled water and remove air bubbles by shaking (as with a mercury clinical thermometer) before immersing into the buffer solution. Always rinse the electrode in deionised/distilled water before using other buffer solutions. Discard the buffer solution after use. Please note that buffer solutions do have a finite shelf life. If possible calibration buffer solutions should be at the normal working temperature. Calibrate electrodes in accordance with the instrument’s working manual.

Ageing
All electrodes undergo a natural ageing process caused by the exchange reactions of the glass membrane and the reference system. This usually results in the electrode having a slow response time, decrease of slope, or changes of isopotential point. Please note that even in storage, electrodes will still be subjected to the ageing process. With refillable electrodes, always check that there is sufficient electrolyte solution. The level of the reference electrolyte should be several cm higher than the level of the measuring medium.

Cleaning
- pH and redox combination electrodes can be cleaned by rinsing in deionised/distilled water, and if necessary dried carefully with tissue paper.
- The redox electrode’s platinum disc or rod may be cleaned by wiping with tissue paper.
- Protein contamination may be removed by soaking for 1 hour in cleaning solution (Pepsin/HCl).
- After use in an oily or organic solution, the pH electrode should be cleaned by dipping into acetone or ethanol for a short period.
- It may be possible to reverse the ageing process effects by immersing the membrane of the pH electrode in a re-conditioning solution (HCl, HF) for up to 2 minutes. (Note any protection regulations).
- After cleaning or rejuvenation the electrode should be rinsed thoroughly in deionised/distilled water before soaking in 3 Mol KCl. The electrode should always be recalibrated before further use.
- Ensure that all electrical terminations and connections are kept clean and dry.

Cable Connectors
- Banana plug 4 mm
- BNC plug
- German DIN plug (DIN 19262)

Prior to despatch, every electrode, sensor and standard solution is individually tested. Standard solutions are controlled against reference standards to secure full traceability to international standards and scales. A quality certificate for each electrode, sensor and standard shows the compatibility with the rigid characteristic data at time of delivery. Please note all standard solutions have a limited shelf life and especially a limited life once opened. An expiry date is tamp on all solution bottles.
MEINSBERG pH and redox (ORP) electrodes are equipped either with fixed low-noise measuring cable or with plug head connectors for laboratory and process applications. The international usual S7 connection system combined with plug-cable combinations is moisture proof and noise-free and ensures compatibility of the electrodes with all types of pH/millivolt instrumentation worldwide.

pH combination electrodes with integrated temperature sensor for laboratory use are available with a fixed low-noise triaxial cable fitted with a German DIN plug (or BNC plug) and a banana plug 4 mm. Reference electrodes and temperature sensors for laboratory application are fitted with fixed cable and banana plug 4 mm or with plug head socket for a banana plug 4 mm. The triaxial cable equipped with the multipin plug head connector features simultaneous measurement of pH and temperature in conjunction with pH/temperature combination electrodes for process applications.

The connector construction of each electrode in this catalogue is signed by a connector code behind the order mark. On request and signed with .../BNC we deliver all our standard electrodes with BNC plug instead of German DIN plug. If other connectors are necessary please state plug or make and model of meter.

Cable and Connector Codes

<table>
<thead>
<tr>
<th>Connection cables for electrodes/sensors</th>
<th>Connector code</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>fixed cable 1 m with German DIN plug or banana plug 4 mm (for reference electrodes and temperature sensors)</td>
<td>without sign</td>
<td>EGA 151</td>
</tr>
<tr>
<td>fixed cable 1 m with BNC plug or banana plug 4 mm (for reference electrodes and temperature sensors)</td>
<td>“/BNC”</td>
<td>EGA 151/BNC</td>
</tr>
<tr>
<td>fixed cable 2 m without connector</td>
<td>“I”</td>
<td>EGA 153 T</td>
</tr>
<tr>
<td>fixed cable 5 m without connector</td>
<td>“K”</td>
<td>EGA 153 K</td>
</tr>
<tr>
<td>fixed cable 5 m without connector and electrode/sensor shaft equipped with hex nut PG 13.5</td>
<td>“K/PG”</td>
<td>EGA 153 K/PG</td>
</tr>
<tr>
<td>Lab plug head S7-system</td>
<td>without sign</td>
<td>EGA 151 L</td>
</tr>
<tr>
<td>Connection cables: Koax 3 / 4 / 5 / 6</td>
<td>“/PG”</td>
<td>EGA 161 L/PG</td>
</tr>
<tr>
<td>PG 13.5 threaded plug head S7-system</td>
<td>“I”</td>
<td>EGA 153 I</td>
</tr>
<tr>
<td>Connection cables: K 43 / K 50 / K 51 / K 52</td>
<td>“/SMEK”</td>
<td>EGA 143 SMEK</td>
</tr>
<tr>
<td>Multipin PG 13.5 threaded SMEK plug head pH electrodes: connection cable K 54</td>
<td>without sign</td>
<td>EGA 139 54</td>
</tr>
<tr>
<td>Conductivity cells, temperature sensors: connection cable K 18</td>
<td>without sign</td>
<td>EGA 121 18</td>
</tr>
<tr>
<td>Oxygen sensors: connection cable K 39</td>
<td>without sign</td>
<td>EGA 111 39</td>
</tr>
</tbody>
</table>
STANDARD AND BUFFER SOLUTIONS

NBS-Standard Buffer Solutions in accordance with DIN 19266 and NIST

<table>
<thead>
<tr>
<th>Temp. °C</th>
<th>pH value</th>
<th>A</th>
<th>C</th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.010</td>
<td>6.984</td>
<td>9.464</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.004</td>
<td>6.951</td>
<td>9.395</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.000</td>
<td>6.923</td>
<td>9.332</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3.999</td>
<td>6.900</td>
<td>9.276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3.901</td>
<td>6.881</td>
<td>9.225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>3.906</td>
<td>6.865</td>
<td>9.180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>4.012</td>
<td>6.853</td>
<td>9.193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>4.021</td>
<td>6.844</td>
<td>9.102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>4.031</td>
<td>6.838</td>
<td>9.068</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>4.043</td>
<td>6.834</td>
<td>9.038</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>4.071</td>
<td>6.834</td>
<td>8.985</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>4.087</td>
<td>6.836</td>
<td>8.962</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Industrial Buffer Solutions in accordance with DIN 19267

<table>
<thead>
<tr>
<th>Temp. °C</th>
<th>pH value</th>
<th>TC</th>
<th>TD</th>
<th>TE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.67</td>
<td>6.89</td>
<td>9.48</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.66</td>
<td>6.84</td>
<td>9.37</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.65</td>
<td>6.80</td>
<td>9.27</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4.65</td>
<td>6.79</td>
<td>9.23</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>4.65</td>
<td>6.76</td>
<td>9.23</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>4.65</td>
<td>6.75</td>
<td>9.18</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>4.66</td>
<td>6.76</td>
<td>9.09</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>4.68</td>
<td>6.76</td>
<td>9.00</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>4.70</td>
<td>6.76</td>
<td>8.92</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>4.72</td>
<td>6.76</td>
<td>8.88</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>4.75</td>
<td>6.78</td>
<td>8.85</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory Buffer Solutions

<table>
<thead>
<tr>
<th>Temp. °C</th>
<th>pH value</th>
<th>4.0</th>
<th>7.0</th>
<th>10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.01</td>
<td>7.13</td>
<td>10.65</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.01</td>
<td>7.07</td>
<td>10.52</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.00</td>
<td>7.05</td>
<td>10.39</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4.00</td>
<td>7.02</td>
<td>10.26</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4.00</td>
<td>7.00</td>
<td>10.13</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>4.01</td>
<td>6.98</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>4.01</td>
<td>6.98</td>
<td>9.87</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>4.02</td>
<td>6.96</td>
<td>9.74</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>4.03</td>
<td>6.96</td>
<td>9.60</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>4.04</td>
<td>6.95</td>
<td>9.48</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>4.06</td>
<td>6.95</td>
<td>9.35</td>
<td></td>
</tr>
</tbody>
</table>

Redox Buffer Solution

<table>
<thead>
<tr>
<th>Temp. °C</th>
<th>pH value</th>
<th>U_a/mV</th>
<th>U_H/mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>7.06</td>
<td>245</td>
<td>462</td>
</tr>
<tr>
<td>15</td>
<td>7.04</td>
<td>236</td>
<td>450</td>
</tr>
<tr>
<td>20</td>
<td>7.02</td>
<td>228</td>
<td>439</td>
</tr>
<tr>
<td>25</td>
<td>7.00</td>
<td>220</td>
<td>427</td>
</tr>
<tr>
<td>30</td>
<td>6.98</td>
<td>212</td>
<td>415</td>
</tr>
<tr>
<td>35</td>
<td>6.96</td>
<td>204</td>
<td>404</td>
</tr>
<tr>
<td>40</td>
<td>6.95</td>
<td>195</td>
<td>391</td>
</tr>
<tr>
<td>45</td>
<td>6.95</td>
<td>187</td>
<td>384</td>
</tr>
<tr>
<td>50</td>
<td>6.96</td>
<td>178</td>
<td>366</td>
</tr>
</tbody>
</table>

Conductivity Standard Solutions

<table>
<thead>
<tr>
<th>Temp. °C</th>
<th>Conductivity in mS/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001 N</td>
<td>1.020</td>
</tr>
<tr>
<td>0.01 N</td>
<td>1.117</td>
</tr>
<tr>
<td>0.1 N</td>
<td>1.225</td>
</tr>
<tr>
<td>0.2 N</td>
<td>1.328</td>
</tr>
<tr>
<td>0.3 N</td>
<td>1.431</td>
</tr>
<tr>
<td>0.4 N</td>
<td>1.539</td>
</tr>
<tr>
<td>0.5 N</td>
<td>1.652</td>
</tr>
<tr>
<td>0.6 N</td>
<td>1.786</td>
</tr>
<tr>
<td>0.7 N</td>
<td>1.920</td>
</tr>
<tr>
<td>0.8 N</td>
<td>2.064</td>
</tr>
<tr>
<td>0.9 N</td>
<td>2.210</td>
</tr>
<tr>
<td>1.0 N</td>
<td>2.365</td>
</tr>
<tr>
<td>1.1 N</td>
<td>2.521</td>
</tr>
<tr>
<td>1.2 N</td>
<td>2.687</td>
</tr>
<tr>
<td>1.3 N</td>
<td>2.854</td>
</tr>
<tr>
<td>1.4 N</td>
<td>3.022</td>
</tr>
<tr>
<td>1.5 N</td>
<td>3.191</td>
</tr>
<tr>
<td>1.6 N</td>
<td>3.361</td>
</tr>
<tr>
<td>1.7 N</td>
<td>3.532</td>
</tr>
<tr>
<td>1.8 N</td>
<td>3.704</td>
</tr>
<tr>
<td>1.9 N</td>
<td>3.877</td>
</tr>
<tr>
<td>2.0 N</td>
<td>4.051</td>
</tr>
<tr>
<td>2.1 N</td>
<td>4.226</td>
</tr>
<tr>
<td>2.2 N</td>
<td>4.402</td>
</tr>
<tr>
<td>2.3 N</td>
<td>4.580</td>
</tr>
<tr>
<td>2.4 N</td>
<td>4.760</td>
</tr>
<tr>
<td>2.5 N</td>
<td>4.941</td>
</tr>
<tr>
<td>2.6 N</td>
<td>5.124</td>
</tr>
<tr>
<td>2.7 N</td>
<td>5.310</td>
</tr>
<tr>
<td>2.8 N</td>
<td>5.498</td>
</tr>
<tr>
<td>2.9 N</td>
<td>5.690</td>
</tr>
<tr>
<td>3.0 N</td>
<td>5.883</td>
</tr>
</tbody>
</table>

UA : redox potential measured against an Ag/AgCl reference electrode 3 M KCl
UH : redox potential measured against a standard hydrogen electrode

Electrical conductivity of KCl solutions
CUSTOMISED ELECTRODES AND OEM COMPONENTS

In addition to the wide range of standard sensors and electrodes, we develop and produce ‘made-to-measure’ electrodes even in small quantities. These electrodes/sensors have been developed and manufactured to meet exact customer specifications if a particular application problem cannot be solved using a standard electrode. We deliver our standard electrodes, specifically designed customised electrodes/sensors as well as electronic components, modules and meters as OEM products prepared for direct connection with your measurement and control systems. Special manuals, comprehensive technical data sheets, application reports and appropriate consultation are an integral part of our project support services.

Some examples of our successful customised and special products:

- Sensor Module for water monitoring in the Closed Equilibrated Biological Aquatic System for space research
- Carbon dioxide hand-held indicator ACO₂ with electrochemical sensor
- OEM pH and redox electrodes for swimming pool water treatment
- Oxygen/temperature sensors for control of aeration in composting plants
- Micro electrodes for medicine technique
- Conductivity meter for mastitis diagnosing in dairy farming
A COMPANY WITH TRADITION

In 1990 Sensortechnik Meinsberg arose from the Meinsberg research institute that was founded by Prof. Kurt Schwabe who developed one of the first pH glass electrodes. The facilities are located in Meinsberg near Waldheim in Saxony/Germany.

MEINSBERG ELECTRODES and electrochemical instrumentation made in Meinsberg have been appreciated for more than 50 years due to their high quality standard, custom-specific design and excellent cost efficiency. In addition Sensortechnik Meinsberg offers complete system solutions for monitoring and process control in analytical multi-parameter technique, from conception and detailed planning, delivery and assembly right through to the initial operational stage.

The innovative multi-disciplinary team of chemists, design engineers, technicians and glassblowers comprises extensive experience and high flexibility as sensor specialists. This guarantees solutions which are tailored to the specific requirements, in excellent quality and latest scientific research.

Many successful projects in the last few years have demonstrated the high efficiency of the company and the ability for realising complete system solutions.

- Cooling water and wastewater monitoring at Berlin Energy Plant
- Drinking water quality monitoring systems for Sosa, Muldenberg and Augsburg Water Works/Germany
- Instrumentation for the sewage treatment plant at Berlin-Schoenefeld Airport
- Water monitoring systems for the former uranium ore mines Koenigstein/Germany
- Drinking water quality monitoring systems for Seoul Metro Water Works/Korea